加入收藏 | 设为首页 | 会员中心 | 我要投稿 网站开发网_盐城站长网 (https://www.0515zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 正文

协同过滤算法:在抖音狂给1000个小姐姐点赞的事被老婆发现了!

发布时间:2020-03-20 02:57:20 所属栏目:创业 来源:做站长
导读:副标题#e# 产品经理要不要懂技术?要的!本系列文章将从最简单的概念开始,逐步讲解推荐系统的发展历程和最新实践。以产品经理的视角,阐述推荐系统涉及的算法,技术和架构。本章是第二章,将系统性地通过图文的方式介绍协同过滤算法。 我有个兄弟,是抖音

而且,用户相似度的计算,最有效的方式不一定是通过本节中介绍的计算方式,带社交功能的APP可以通过用户的好友关系,一般的APP可以通过获取用户的通讯录实现用户协同过滤。这些方式都来的更加简单和直接。

四、模型协同过滤-矩阵分解(SVD)

对于很多没有计算机专业背景的人来说,直接理解SVD算法是很困难的。需要有高等数学,线性代数,还要理解机器学习模型中的目标函数,损失函数,梯度,正则化,最小二乘法等概念。很多文章介绍SVD都很技术,这里不准备采用技术大咖们的方式。我还是继续用图文的方式介绍,这也许是世界上最简单的理解SVD的方式。

首先介绍一下背景。

SVD算法的诞生,跟美国Netflix公司有关。这家公司中文名叫网飞,拍了大家熟悉的网剧《纸牌屋》。

协同过滤算法:在抖音狂给1000个小姐姐点赞的事被老婆发现了!

时间来到2006年,Netflix发起一个推荐系统的悬赏竞赛。他们公开了自己网站的用户数据评分数据包,并放出100万美元悬赏优化推荐算法。凡是能在Netflix现有的推荐系统基础上,把均方根误差降低10%的人,都能参与瓜分这100万美元。消息一放出,引来了无数高手参加。这场比赛中,最佳算法就是SVD。

背景介绍完了,接下来直接介绍SVD是怎么计算的。

还是跟前面那样,简单化问题:假设一个平台只有4个用户和4本图书。

(1)数据

用户对物品评分1-5分,且有以下评分记录。

协同过滤算法:在抖音狂给1000个小姐姐点赞的事被老婆发现了!

(2)学习算法

根据线性代数我们知道,一个矩阵可以分解为多个矩阵的乘积。SVD英文全称叫做Singular Value Decomposition,这个算法是个矩阵分解的通用名称,在不同领域有不同的形式。在推荐系统领域,可以简单的认为,SVD就是将一个矩阵,在一定的精度损失下,将一个矩阵分解成两个矩阵。

运用这个算法,我们可以将上图的矩阵做以下的近似分解:

协同过滤算法:在抖音狂给1000个小姐姐点赞的事被老婆发现了!

(编辑:网站开发网_盐城站长网 )

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读